Abstract
Decellularised tissue allografts have been used in reconstructive surgical applications and transplantation for many years. Some of the current methods of sterilisation have a detrimental effect on the tissue graft structure and function. The anti-microbial activity of cupric ions and hydrogen peroxide (H2O2) are well known however their combined application is not currently utilised as a decontamination agent in the tissue banking world sector. The aim of this study was to determine the combined concentrations of copper chloride (CuCl2) and H2O2 that have the optimal bactericidal and sporicidal activity on decellularised (dCELL) human dermis. The first part of this study established the decimal reduction time (D-value) of CuCl2 (0.1 mg/L and 1 mg/L) together with H2O2 (0.01, 0.1, 0.5 and 1%) for Staphylococcus epidermidis, Escherichia coli and Bacillus subtilis spores. The second part of this study identified the most effective CuCl2 and H2O2 concentration that decontaminated dCELL human dermis inoculated with these pathogens. Of all the concentrations tested, 0.1 mg/L CuCl2 in combination with 1% H2O2 had the shortest D-value; S. epidermidis D = 3.15 min, E. coli D = 2.62 min and B. subtilis spores D = 18.05 min. However when adsorbed onto dCELL dermis, S. epidermidis and E. coli were more susceptible to 1 mg/L CuCl2 together with 0.5% H2O2. These studies show promise of CuCl2–H2O2 formulations as potential sterilants for decellularised dermal allografts.
http://ift.tt/2yEdk3O
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου