Abstract
Due to the low contrast and ambiguous boundaries of the tumors in breast ultrasound (BUS) images, it is still a challenging task to automatically segment the breast tumors from the ultrasound. In this paper, we proposed a novel computational framework that can detect and segment breast lesions fully automatic in the whole ultrasound images. This framework includes several key components: pre-processing, contour initialization, and tumor segmentation. In the pre-processing step, we applied non-local low-rank (NLLR) filter to reduce the speckle noise. In contour initialization step, we cascaded a two-step Otsu-based adaptive thresholding (OBAT) algorithm with morphologic operations to effectively locate the tumor regions and initialize the tumor contours. Finally, given the initial tumor contours, the improved Chan-Vese model based on the ratio of exponentially weighted averages (CV-ROEWA) method was utilized. This pipeline was tested on a set of 61 breast ultrasound (BUS) images with diagnosed tumors. The experimental results in clinical ultrasound images prove the high accuracy and robustness of the proposed framework, indicating its potential applications in clinical practice.
Graphical abstract
http://ift.tt/2CpxnZ9
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου