Abstract
mPEG and mPEG-peptide based drug delivery systems were prepared by conjugating doxorubicin (DOX) to these carrier molecules via hydrazone bond. The peptide, AT1, with a sequence of CG3H6G3E served as mPEG and doxorubicin attachment site. Histidines were incorporated to the sequence to improve pH responsiveness of the carrier molecule. Hydrodynamic diameters (mean sizes) of mPEG-based drug delivery system (mPEG-HYD-DOX) were measured as 9 ± 0.5 and 7 ± 0.5 nm at pH 7.4 and pH 5.0, respectively. Mean size of the aggregates of the peptide containing drug delivery system, mPEG-AT1-DOX, was determined as 12 ± 2 nm at neutral pH. At pH 5.0, on the other hand, mPEG-AT1-DOX exhibited a size distribution between 20 and 100 nm centered at about 40 nm. Comparison of % DOX release values of the drug delivery systems obtained at pH 7.4 and pH 5.0 indicated that mPEG-AT1-DOX has enhanced pH sensitivity. DOX equivalent absolute IC50 values were obtained as 0.96 ± 0.51, 21.9 ± 5.9, and 5.55 ± 0.75 μg/mL for free DOX, mPEG-HYD-DOX, and mPEG-AT1-DOX, respectively. Considering more pronounced pH sensitivity and cytotoxicity of mPEG-AT1-DOX, the use of both pH responsive functional groups and acid cleavable chemical bond between the carrier molecule and drug can be a promising approach in the design of drug delivery systems for cancer therapy.
https://ift.tt/2Gb3CwW
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου