Abstract
In 1971, Manfred Eigen extended the principles of Darwinian evolution to chemical processes, from catalytic networks to the emergence of information processing at the molecular level, leading to the emergence of life. In this paper, we investigate some very general characteristics of this scenario, such as the valuation process of phenotypic traits in a high-dimensional fitness landscape, the effect of spatial compartmentation on the valuation, and the self-organized transition from structural to symbolic genetic information of replicating chain molecules. In the first part, we perform an analysis of typical dynamical properties of continuous dynamical models of evolutionary processes. In particular, we study the mapping of genotype to continuous phenotype spaces following the ideas of Wright and Conrad. We investigate typical features of a Schrödinger-like dynamics, the consequences of the high dimensionality, the leading role of saddle points, and Conrad's extra-dimensional bypass. In the last part, we discuss in brief the valuation of compartment models and the self-organized emergence of molecular symbols at the beginning of life.
http://ift.tt/2CRdAgw
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου