Abstract
This paper discusses a perturbation compensation-based robust vibration controller for single-axis MEMS gyroscope applications. The purpose is to obtain a robust and stable operation mode of the gyroscope and improve its capability in estimating time-varying angular velocities. First, based on the force-balancing operation mode, an estimator is designed for real-time identification of input angular velocities. Next, to facilitate the angular velocity sensing, a control system is designed that comprises a nominal controller gathered with a perturbation compensator. In the perturbation compensation stage, a nonlinear extended state observer (NESO) is designed to estimate the perturbations due to parametric uncertainty, undesired couplings, Coriolis acceleration and mechanical-thermal noises. In the nominal control stage, by applying the internal model principle, an output regulator is developed. The outputs of both NESO and nominal regulator are combined to attain the robust vibration control of the gyroscope. The closed-loop stability and robustness are analytically proved through Lyapunov's direct method. To show the effectiveness of the proposed closed-loop operation mode, extensive numerical simulations are carried out by the experimental data of an inertial navigation system (INS).
http://ift.tt/2oEuUAa
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου