Abstract
Yellow drum (Nibea albiflora) is a commercially important marine fish, which is widely distributed in the coastal waters of China, Japan and Korea. Wild yellow drum resources have dramatically declined due to overfishing and ocean pollution. Genetic data can contribute to biodiversity conservation and protection. And molecular markers can play important roles in genetic breeding and aid in germplasm preservation in fish. In this study, 11 tissues (brain, heart, liver, kidney, muscle, head kidney, skin, fin, spleen, gonad and air bladder) were collected for pooled RNA sequencing. The unigenes were assembled using Trinity and EvidentialGene, and were then aligned to nr, nt, Swiss-Prot GO, KEGG, and KOG for annotation. Molecular markers (e.g. simple sequence repeat, SSR and single nucleotide polymorphism, SNP) were detected using MIcroSAtellite identification tool (MISA) and Genome Analysis Tool Kit (GATK). All clean reads were assembled into 109,209 transcripts, and 31,183 unigenes were generated after pruning and classifying, ranging from 201 to 19,857 bp in length (1230 bp in average), and 26,728 (85.7%) assembled unigenes had significant hits in public databases. Total of 27 and 103 unigenes were respectively identified as involved in growth- and immune-related pathways in the N. albiflora transcriptome. In addition, we identified a considerable quantity of molecular markers, including 11,484 SSRs and 56,186 SNPs. The growth- and immune-relevant genes and the molecular markers identified here provided a meaningful reference gene set and laid a foundation for future genetic selection and breeding for this species.
https://ift.tt/2FdtKSI
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου