Abstract
The linear stability analysis of vertical throughflow of power law fluid for double-diffusive convection with Soret effect in a porous channel is investigated in this study. The upper and lower boundaries are assumed to be permeable, isothermal and isosolutal. The linear stability of vertical through flow is influenced by the interactions among the non-Newtonian Rayleigh number (Ra), Buoyancy ratio (N), Lewis number (Le), Péclet number (Pe), Soret parameter (Sr) and power law index (n). The results indicate that the Soret parameter has a significant influence on convective instability of power law fluid. It has also been noticed that buoyancy ratio has a dual effect on the instability of fluid flow. Further, it is noticed that the basic temperature and concentration profiles have singularities at \(Pe = 0\) and \(Le = 1\) , the convective instability is looked into for the limiting case of \(Pe\rightarrow 0\) and \(Le \rightarrow 1\) . For the case of pure thermal convection with no vertical throughflow, the present numerical results coincide with the solution of standard Horton–Rogers–Lapwood problem. The present results for critical Rayleigh number obtained using bvp4c and two-term Galerkin approximation are compared with those available in the literature and are tabulated.
http://ift.tt/2pVToca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου