Abstract
A novel design for three degree of freedom (DoF) mechanical arm, i.e. a 3-PUS/S Spherical Parallel Manipulator (SPM) with three rotational motions is proposed in this article. In addition, its kinematic equations, singularity and design optimization are studied according to its application. The proposed parallel robot that has three legs with three prismatic joints can rotate about Z-axis unlimitedly. Therefore, the manipulator has large workspace and good flexibility, hence being attractive to study. To complete the kinematic analysis of the manipulator, three stages are considered as follows. At the first, the kinematics of the SPM is explained to obtain the positions, velocities, and accelerations. Furthermore, the Jacobian and Hessian matrices of the 3-PUS/S Parallel Manipulator are derived. The results are verified by the use of CAD and Adams software. Next, the Jacobian matrix obtained from the kinematic equations is utilized to study the different types of singularities. Finally, the optimum dimensions of the manipulator based on kinematic and singularity features are studied by Genetic Algorithm (GA), and the Global Condition Index (GCI) is maximized. The results help the designers to achieve an ideal geometry for the parallel manipulator with good workspace and minimum singularity.
http://ift.tt/2lrXhQR
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου